

Welcome to PyOpenVidu’s documentation!

Contents:

	PyOpenVidu
	Features

	Credits

	Installation
	Stable release

	From sources

	Examples

	About fetching…
	Dynamic and static objects

	Reasons

	Advanced Usage
	Initial Fetching

	Timeouts

	Migrating
	From 0.1.4 to 0.2.0
	Behavioural changes

	Changes of the interface

	Module overview
	Classes
	OpenVidu

	OpenViduSession

	OpenViduConnection

	OpenViduPublisher

	OpenViduSubscriber

	Exceptions

	Contributing
	Types of Contributions
	Report Bugs

	Fix Bugs

	Implement Features

	Write Documentation

	Submit Feedback

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.1 (2022-03-10)

	0.2.0 (2020-12-30)

	0.1.4 (2020-05-24)

	0.1.3 (2020-04-26)

	0.1.2 (2020-04-07)

	0.1.1 (2020-04-04)

	0.1.0 (2020-04-03)

Indices and tables

	Index

	Module Index

	Search Page

PyOpenVidu

[image: _images/pyopenvidu.svg]
 [https://pypi.python.org/pypi/pyopenvidu][image: _images/pyopenvidu1.svg]
 [https://travis-ci.com/marcsello/pyopenvidu][image: Documentation Status]
 [https://pyopenvidu.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://codecov.io/gh/marcsello/pyopenvidu][image: _images/53a97676fca041f9bfcaa6a7bc69ac1f.svg]
 [https://www.codacy.com/manual/marcsello/pyopenvidu?utm_source=github.com&utm_medium=referral&utm_content=marcsello/pyopenvidu&utm_campaign=Badge_Grade]Python interface to the OpenVidu [https://openvidu.io/] WebRTC videoconference framework.

	Free software: MIT license

	Documentation: https://pyopenvidu.readthedocs.io.

	Flask extension: https://pypi.org/project/flask-openvidu/

Features

	Use OpenVidu API objects as native Python objects

	Supports Python 3.7 and above

	Depends on nothing more than requests and requests-toolbelt

Credits

This implementation is inspired by the original Java implementation by the OpenVidu team.
https://openvidu.io/docs/reference-docs/openvidu-java-client/

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install PyOpenVidu, run this command in your terminal:

$ pip3 install pyopenvidu

This is the preferred method to install PyOpenVidu, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for PyOpenVidu can be downloaded from the Github repo [https://github.com/marcsello/pyopenvidu].

You can either clone the public repository:

$ git clone git://github.com/marcsello/pyopenvidu

Or download the tarball [https://github.com/marcsello/pyopenvidu/tarball/master]:

$ curl -OJL https://github.com/marcsello/pyopenvidu/tarball/master

Once you have a copy of the source, you can install it with:

$ python3 setup.py install

Examples

To use PyOpenVidu in a project, first import it:

from pyopenvidu import OpenVidu

Create a session:

openvidu = OpenVidu(OPENVIDU_URL, OPENVIDU_SECRET)
session = openvidu.create_session()

Generate a token a session:

token = session.create_webrtc_connection().token

Fetch information:

Fetch all session info from OpenVidu Server
openvidu.fetch()
sessions = openvidu.sessions # sessions returns a list of OpenViduSession objects

Fetch a specific session info from the server
session.fetch()
connections = session.connections

Fetch a specific connection info from the server
connection.fetch()
subs = connection.subscribers

Send signals:

Broadcast signal to session
session.signal("MY_TYPE", "Hello world!")

Send to a specific connection
session.get_connection("vhdxz7abbfirh2lh").signal("MY_TYPE", "Hello other world!")

Send to every other connection
Note: This does not make any subsequent API calls, as the connections information is already stored in memory
session.signal("MY_TYPE", "Yolo world!", [conn for i, conn in enumerate(session.connections) if i % 2 == 0])

Connect to IP camera:

session.create_ipcam_connection("rtsp://mydomain.net:1935/live/stream")

Close a session:

session.close()

Force disconnect users:

Disconnect a specific user
None: Don't forget to call session.fetch() to work with the updated list of clients
session.get_connection("vhdxz7abbfirh2lh").force_disconnect()

Disconnect every other user
Note: This does not make any subsequent API calls, as the connections information is already stored in memory
for i, conn in enumerate(session.connections):
 if i % 2 == 0:
 conn.force_disconnect()

session.fetch() Should be called about here.

Force unpublish an user’s streams:

Unpublish a single stream (most of the time there is only one, except when sharing screen):
session.get_connection("vhdxz7abbfirh2lh").publishers[0].force_unpublish()

Unpublish all streams of an user:
session.get_connection("vhdxz7abbfirh2lh").force_unpublish_all_streams()

About fetching…

Warning

In PyOpenVidu version 0.2.0 the dynamic and static objects are changed.
See Migrating for more information.

This document contains updated information.

In PyOpenVidu there are two kind of objects: dynamic and static. This section aim to explain the details about this design.

Dynamic and static objects

The dynamic objects implement a fetch() method that can be used to update it’s internal representation.

Dynamic objects, and methods that change their internal representation

	Object

	Method

	Notes

	OpenVidu

	__init__(…)

	Upon instantiating this object makes a call to self.fetch() to collect initial data. (if not disabled)

	OpenVidu

	fetch()

	Updates the internal representation of the that single OpenVidu object.

	OpenViduSession

	fetch()

	Updates the internal representation of that single OpenViduSession object.

	OpenViduConnection

	fetch()

	Updates the internal representation of that single OpenViduConnection object.

Please note, that although OpenViduSession.create_webrtc_connection(…), OpenViduSession.create_ipcam_connection(…) and OpenVidu.create_session(…) returns with a new connection or session object, which is even begging added to the appropriate list.
It does not update the internal representation of it’s parent (OpenViduSession.fetch() or OpenVidu.fetch() must be called to update the info of other connections). The reason for this is that the API returns the full object, so a fetch() int the background is not required.

Static objects are not designed to update their internal representation, thus not implementing a fetch() method.
Such objects should not be reused at all, and must be considered invalid after any changes made to them by other calls.
A new version of those objects could be requested by calling the fetch() method of the dynamic object that provides them.

Static objects and methods that turns them, or their parent invalid

	Object

	Method

	Notes

	OpenViduPublisher

	force_unpublish()

	Affects other OpenViduConnection objects because subscriptions may change as well.

	OpenViduSubscriber

	
	

Reasons

The reason behind this architecture is mainly comes from the fact, that the original Java library, that this library took inspiration from uses the same solution.

Because the OpenVidu server does not expose other endpoints than GET sessions, GET sessions/<SESSION_ID> and GET sessions/<SESSION_ID>/connections/<CONNECTION_ID> by making every object “dynamic” would cause a lot of network overhead by transfering the unwanted information (e.g.: updating a Subscriber object would cause downloading all session data and using only a fraction of it).

Another approach would be to not have an internal representation at all, meaning that every method of every object would cause an API call in the background.
This would be a bad idea for the following reasons:

	The server exposes only the few endpoint mentioned above, causing an excessive overhead.

	Accessing to multiple properties of an object would cause an equal amount of API calls (mostly to the same endpoint in our case) instead of one or zero calls when instantiating the object.

	Error handling would be more complicated. The programmer who uses this library must handle HTTP communication errors when accessing to properties as well as deal with the possibility that the represented object changes between API calls (e.g.: The user disconnects between accessing to created_at and role properties).

Advanced Usage

Initial Fetching

It is possible, to disable fetching upon the creation of the OpenVidu object.
This can be achieved by setting the initial_fetch attribute to False when creating the object.
Doing so will cause the newly created OpenVidu object to not know anything about the state of the OpenVidu server.
Not even knowing if it’s possible to connect to it.

	Without fetching it is still possible to use the following methods:

	
	create_session(): No state information is required to start a new session (existance of the session is validated by the server).

	get_config(): The configuration of the server is not stored at all, so this call will always request this from the server.

	fetch(): Well, that one is kind of obvious.

	If you are confident that’s something you need. You can use this to reduce the number of requests in certain cases. Here are some examples of such a scenario:

	
	You are making something, that calls fetch() before every operation anyways. This would make an initial fetch pointless, so you can disable it.

	It is not possible to connect to the OpenVidu server during the object creation. Later you will call fetch() when it’s possible.

	After creating the OpenVidu object you will call fetch() instantly.

	Your program will create a session as soon as the OpenVidu object created, and only use that.

	All you need is getting the config using get_config().

Timeouts

It is possible to setup a timeout for every request instantiated by the OpenVidu object.
This can be done by setting the timeout attribute when creating the OpenVidu instance.

This value is passed to the underlying Requests session. For more information of the possible combinations and how they work, see requests’s documentation [https://2.python-requests.org/en/latest/user/advanced/#timeouts] on this topic.

The Timeout exceptions raised by Requests are not modified in any way, so you have to catch the exceptions raised directly by requests.

Here is an example on using timeouts:

from pyopenvidu import OpenVidu
import requests.exceptions

Set both connect and read timeout to 2 sec
openvidu = OpenVidu(OPENVIDU_URL, OPENVIDU_SECRET, initial_fetch=False, timeout=2)

try:
 session = openvidu.create_session()

except requests.exceptions.Timeout:
 print("This didn't work: Operation timed out")

Migrating

This page summarizes breaking changes between versions in order to help developers migrating to a newer version of PyOpenVidu.

From 0.1.4 to 0.2.0

With the release of OpenVidu 2.16.0, the REST API of the OpenVidu server changed a lot in various ways.
This has proven that it is not safe make any assumptions about how stable this API will be in the future.

Without any guarantee about said stability. The architecture of the PyOpenVidu library had to be made a little loose in order help adopting later changes.

Because this release must bring changes to the interface of this library (because of the above described reasons), a few more other modifications are added in, to make make the library more maintainable, straightforward to use and less prone to errors.

Behavioural changes

Although many things changed, the followings only affect your program in a few edge-cases. And only minor changes are required in those cases as well.

Fetching the OpenVidu object no longer updates the existing session objects

This was a broken design to begin with. Originally if you called fetch() on the OpenVidu instance, it would update all other instances of OpenViduSession. This required the OpenVidu object to keep the reference for each OpenViduSession object. Which meant very tight coupling of those objects. This tight coupling caused more problems than it should.

First of all thread safety caused a huge issue when those objects are accessed from different threads (Python’s GIL saved most of the headaches, but this still could cause strange behavior). In order to solve this problem, a shared lock between objects was used (See the next section) which not just caused performance issues, but was hard to maintain as well.

Second was the rigid architecture of how the updating of internal representations processed, was an awkward point when the OpenVidu REST API changed in version 2.16.0. Because OpenVidu REST API is not stable, and can change even in minor versions, such a rigid architecture is not a good idea to keep.

Thirdly, this behaviour also caused confusion for software developers, because it is different from what one might expect.

Because of the above outlined issues, this feature was removed: A fetch() call on the “parent” object (Not in terms of OOP) no longer cause the update of the information stored in their “children”.

If you need to update many OpenVidu session objects in batch, you should call fetch() on the OpenVidu instance itself, and use the sessions property, to access the updated list of sessions.

If you only need to update a few OpenViduSession objects, you should use their fetch() method instead, as it’s more efficient.

The interface is no longer thread safe.

This was more like side-effect of the above mentioned (and now removed) half-solution to a problem that should not exist.
With that feature removed, using locks no longer made sense.

Instead of that the developer who is using the library should have a control over how and when locks are used. This is a better approach in many ways:

	The developer can use any type of lock they want, so that it will work on any framework they might want to use (Multiprocessing, Qt’s QThreads, etc.) not just plain Python threads.

	Because of the nature of this library it won’t be unlikely that after some call that changes the data of a class (e.g.: fetch()) one may access to more than one properties. Because an internal lock would lock those individually it might be possible for another thread to change the value of the properties before they are read after changing it on the other thread. In this scenario an external lock would be needed anyway, so an internal one would be useless.

	No unwanted side effects of the unexpected locks.

Because of the above mentioned reasons, this feature is now removed.

Connection object is now dynamic

Well this is not a breaking change, but it’s important to mention. As of OpenVidu release 2.16.0 it is possible to fetch info about a connection directly.
This made it possible to implement fetch() for the connection object as well.

Base URL must include the /api/ part

Originally the /api/ part was appended to the base url by the library itself. This was needed because there was a single endpoint which could not be reached under /api (config). But with OpenVidu release 2.16.0 this endpoint was moved bellow /api.
This allows more freedom of your reverse proxy and server configuration.

If you previously passed https://my.openvidu.instance.com:4443/ to the constructor of the OpenVidu object. Now you have to pass https://my.openvidu.instance.com:4443/openvidu/api/. (The /openvidu/ part was added in the new release of OpenVidu as well)

Creating a new session no longer does an internal fetch() call

As of OpenVidu release 2.16.0 the API returns the created session object. This allows PyOpenVidu to return with the newly created OpenViduSession object without fetching it first.

The new object is also being added to the OpenVidu.sessions list, but the other sessions are not being updated at this point.

Properties no longer fail if the object is invalid

Before this release. An object might raised an exception when it was invalid and specific properties are accessed. (e.g.: connection_count of the OpenViduSession instance, and stuff like that).

This was a kind of inconsistent behaviour because not every property implemented it. And by rewriting parts of the code to use dataclasses instead of properties implemented one-by-one it would require ugly hacks to achieve.

This also introduced an unnecessary limitation, because invalid object’s properties could not be used while in some scenarios this would be useful. Also programmers had to write unnecessary try-except blocks around all code that access properties/getters because it was not clear which ones may fail and which may not.
Because of this inconsistency this was a perfectly useless restriction.

Because of the above mentioned reasons this behaviour is removed. From now on getters/properties won’t raise any exception if they are being used. Allowing the use of those values even if the object became invalid.

Changes of the interface

Two type of connections

The following tables summarize the changes of various classe’s methods and properties.

OpenViduSession

	Old attribute

	New attribute

	Notes

	(method) generate_token(role, data, video_max_recv_bandwidth, video_min_recv_bandwidth, video_max_send_bandwidth, video_min_send_bandwidth, allowed_filters -> str

	(method) create_webrtc_connection(role, data, video_max_recv_bandwidth, video_min_recv_bandwidth, video_max_send_bandwidth, video_min_send_bandwidth, allowed_filters) -> OpenViduWEBRTCConnection

	Token is now a property of the OpenViduWEBRTCConnection returned.

	(method) publish(rtsp_uri, data, adaptive_bitrate, only_play_with_subscribers, type_) -> OpenViduConnection

	(method) create_ipcam_connection(rtsp_uri, data, adaptive_bitrate, only_play_with_subscribers, network_cache) -> OpenViduIPCAMConnection

	type_ is removed A new parameter network_cache is added. Also default values not provided.

	(property) connections -> Iterator[OpenViduConnection]

	(property) connections -> List[OpenViduConnection]

	This property is changed to a List from Iterator.

OpenViduConnection

	Old attribute

	New attribute

	Notes

	N/A

	(property) fetch() -> bool

	Connection objects became dynamic.

	N/A

	(property) is_valid -> bool

	Connection objects became dynamic.

	N/A

	(property) publisher_count -> int

	Added for convenience.

	N/A

	(property) subscriber_count -> int

	Added for convenience.

OpenViduPublisher

	Old attribute

	New attribute

	Notes

	(property) rtsp_uri -> str

	(property) OpenViduIPCAMConnection.rtsp_uri -> str

	This property is moved from the publisher to the connection object itself.

Module overview

Top-level package for PyOpenVidu.

Classes

	OpenVidu

	OpenViduSession

	OpenViduConnection

	OpenViduPublisher

	OpenViduSubscriber

	Exceptions

OpenVidu

OpenVidu class.

	
class pyopenvidu.openvidu.OpenVidu(url: str, secret: str, initial_fetch: bool = True, timeout: Union[int, tuple, None] = None, verify: Union[str, bool, None] = None, cert: Union[tuple, str, None] = None)

	Bases: object

This object represents a OpenVidu server instance.

	Parameters

	
	url – The url to reach your OpenVidu Server instance. Typically, something like https://localhost:4443/

	secret – Secret for your OpenVidu Server

	initial_fetch – Enable the initial fetching on object creation.
Defaults to True. If set to False a fetch() must be called before doing anything with the object.
In most scenarios you won’t need to change this.

	timeout – Set the timeout property of the underlying requests call. Default: None = No timeout.
See https://2.python-requests.org/en/latest/user/advanced/#timeouts for possible values.

	verify – Set the verify property of the underlying requests call. Default: None = Use certifi.
See https://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification.

	cert – Set the cert property of the underlying requests call. Default: None = No client cert.
See https://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification

	
create_session(custom_session_id: str = None, media_mode: str = None) → pyopenvidu.openvidusession.OpenViduSession

	Creates a new OpenVidu session.

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#post-openviduapisessions

	Parameters

	
	custom_session_id – You can fix the sessionId that will be assigned to the session with this parameter.

	media_mode – ROUTED (default) or RELAYED

	Returns

	The created OpenViduSession instance.

	
fetch() → bool

	Updates every property of every active Session with the current status they have in OpenVidu Server.
After calling this method you can access the updated list of active sessions through the sessions property.

	Returns

	true if the Session status has changed with respect to the server, false if not.
This applies to any property or sub-property of the object.

	
get_config() → dict

	Get OpenVidu active configuration.

Unlike session related calls. This call does not require prior calling of the fetch() method.
Using this function will always result an API call to the backend.

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#get-openviduapiconfig

	Returns

	The exact response from the server as a dict.

	
get_session(session_id: str) → pyopenvidu.openvidusession.OpenViduSession

	Get a currently active session to the server.

	Parameters

	session_id – The ID of the session to acquire.

	Returns

	An OpenViduSession object.

	
session_count

	Get the number of active sessions on the server.

	Returns

	The number of active sessions.

	
sessions

	Get a list of currently active sessions to the server.

	Returns

	A list of OpenViduSession objects.

OpenViduSession

OpenViduSession class.

	
class pyopenvidu.openvidusession.OpenViduSession(session: requests_toolbelt.sessions.BaseUrlSession, data: dict)

	Bases: object

This object represents an OpenVidu Session.
A session is a group of users sharing communicating each other.

Direct instantiation of this class is not supported!
Use OpenVidu.get_session to get an instance of this class.

	
close()

	Gracefully closes the Session: unpublishes all streams and evicts every participant.
Further calls to this object will fail.

	
connection_count

	Get the number of active connections to the session.

	Returns

	The number of active connections.

	
create_ipcam_connection(rtsp_uri: str, data: str = None, adaptive_bitrate: bool = None, only_play_with_subscribers: bool = None, network_cache: int = None) → pyopenvidu.openviduconnection.OpenViduIPCAMConnection

	Publishes a new IPCAM rtsp stream to the session.

Keep in mind, that if you want the newly created Connection to appear in the connections list,
you should call fetch() before accessing the list!

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#post-openviduapisessionsltsession_idgtconnection

	Parameters

	
	rtsp_uri – RTSP URI of the IP camera. For example: rtsp://your.camera.ip:7777/path.

	data – Metadata you want to associate to the camera’s participant.

	adaptive_bitrate – Whether to use adaptive bitrate or not.

	only_play_with_subscribers – Enable the IP camera stream only when some user is subscribed to it.

	network_cache – Size of the buffer of the endpoint receiving the IP camera’s stream, in milliseconds.

	Returns

	An OpenVidu connection object represents the newly created connection.

	
create_webrtc_connection(role: str = 'PUBLISHER', data: str = None, video_max_recv_bandwidth: int = None, video_min_recv_bandwidth: int = None, video_max_send_bandwidth: int = None, video_min_send_bandwidth: int = None, allowed_filters: list = None) → pyopenvidu.openviduconnection.OpenViduWEBRTCConnection

	Creates a new Connection object of WEBRTC (Regular user) type to the session.

In the video bandwidth settings 0 means unconstrained. Setting any of them (other than None) overrides
the values configured in for the server.

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#post-openviduapisessionsltsession_idgtconnection

	Parameters

	
	role – Allowed values: SUBSCRIBER, PUBLISHER or MODERATOR

	data – metadata associated to this token (usually participant’s information)

	video_max_recv_bandwidth – Maximum number of Kbps that the client owning the token
will be able to receive from Kurento Media Server.

	video_min_recv_bandwidth – Minimum number of Kbps that the client owning the token
will try to receive from Kurento Media Server.

	video_max_send_bandwidth – Maximum number of Kbps that the client owning the token
will be able to send to Kurento Media Server.

	video_min_send_bandwidth – Minimum number of Kbps that the client owning the token
will try to send to Kurento Media Server.

	allowed_filters – Array of strings containing the names of the filters the user owning the token
will be able to apply.

	Returns

	An OpenVidu connection object represents the newly created connection.

	
fetch()

	Updates every property of the OpenViduSession with the current status it has in OpenVidu Server.
This is especially useful for getting the list of active connections
to the OpenViduSession through the connections property.

	Returns

	True if the OpenViduSession status has changed with respect to the server, False if not.
This applies to any property or sub-property of the object

	
get_connection(connection_id: str) → pyopenvidu.openviduconnection.OpenViduConnection

	Get a currently active connection to the server.

	Parameters

	connection_id – Connection id.

	Returns

	A OpenViduConnection objects.

	
signal(type_: str = None, data: str = None, to: Optional[List[pyopenvidu.openviduconnection.OpenViduConnection]] = None)

	Sends a signal to all participants in the session or specific connections if the to property defined.
OpenViduConnection objects also implement this method.

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#post-openviduapisignal

	Parameters

	
	type – Type of the signal. In the body example of the table above, only users subscribed to
Session.on(‘signal:MY_TYPE’) will trigger that signal. Users subscribed to Session.on(‘signal’)
will trigger signals of any type.

	data – Actual data of the signal.

	to – List of OpenViduConnection objects to which you want to send the signal.
If this property is not set (None) the signal will be sent to all participants of the session.

OpenViduConnection

OpenViduConnection class.

	
class pyopenvidu.openviduconnection.OpenViduConnection(session: requests_toolbelt.sessions.BaseUrlSession, data: dict)

	Bases: object

This is a base class for connection objects.

Direct instantiation of this class is not supported!
Use OpenViduSession.connections to get an instance of this class.

	
fetch() → bool

	Updates every property of the connection object.

	Returns

	true if the Connection object status has changed with respect to the server, false if not.
This applies to any property or sub-property of the object.

	
force_disconnect()

	Forces the disconnection from the session.
Remember to call fetch() after this call to fetch the current properties of the Session from OpenVidu Server!

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#delete-openviduapisessionsltsession_idgtconnectionltconnection_idgt

	
force_unpublish_all_streams()

	Forces the user to unpublish all of their Stream. OpenVidu Browser will trigger the proper events on the
client-side (streamDestroyed) with reason set to “forceUnpublishByServer”. After this call, the instance of
the object, should be considered invalid. Remember to call fetch() after this call to fetch the actual
properties of the Session from OpenVidu Server!

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#delete-openviduapisessionsltsession_idgtstreamltstream_idgt

	
publisher_count

	

	
signal(type_: str = None, data: str = None)

	Sends a signal to this connection.

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#post-openviduapisignal

	Parameters

	
	type – Type of the signal. In the body example of the table above, only users subscribed to
Session.on(‘signal:MY_TYPE’) will trigger that signal. Users subscribed to Session.on(‘signal’)
will trigger signals of any type.

	data – Actual data of the signal.

	
subscriber_count

	

	
class pyopenvidu.openviduconnection.OpenViduIPCAMConnection(session: requests_toolbelt.sessions.BaseUrlSession, data: dict)

	Bases: pyopenvidu.openviduconnection.OpenViduConnection

This object represents an OpenVidu IPCAM type of Connection.
This is a connection between an IPCAM and a session.

Direct instantiation of this class is not supported!
Use OpenViduSession.connections to get an instance of this class.

	
class pyopenvidu.openviduconnection.OpenViduWEBRTCConnection(session: requests_toolbelt.sessions.BaseUrlSession, data: dict)

	Bases: pyopenvidu.openviduconnection.OpenViduConnection

This object represents an OpenVidu WEBRTC type of Connection.
This is a connection between an user and a session.

Direct instantiation of this class is not supported!
Use OpenViduSession.connections to get an instance of this class.

OpenViduPublisher

OpenViduPublisher class.

	
class pyopenvidu.openvidupublisher.OpenViduPublisher(session: requests_toolbelt.sessions.BaseUrlSession, session_id: str, data: dict)

	Bases: object

Direct instantiation of this class is not supported!
Use OpenViduConnection.publishers to get an instance of this class.

	
force_unpublish()

	Forces some user to unpublish a Stream. OpenVidu Browser will trigger the proper events on the client-side
(streamDestroyed) with reason set to “forceUnpublishByServer”. After this call, the instace of the object
and the parent OpenViduConnection instance should be considered invalid. Remember to call fetch() after this
call to fetch the current actual properties of the Session from OpenVidu Server!

https://docs.openvidu.io/en/2.16.0/reference-docs/REST-API/#delete-openviduapisessionsltsession_idgtstreamltstream_idgt

OpenViduSubscriber

OpenViduSubscriber class.

	
class pyopenvidu.openvidusubscriber.OpenViduSubscriber(session: requests_toolbelt.sessions.BaseUrlSession, session_id: str, data: dict)

	Bases: object

Direct instantiation of this class is not supported!
Use OpenViduConnection.subscribers to get an instance of this class.

Exceptions

	
exception pyopenvidu.exceptions.OpenViduConnectionDoesNotExistsError

	Bases: pyopenvidu.exceptions.OpenViduConnectionError

	
exception pyopenvidu.exceptions.OpenViduConnectionError

	Bases: pyopenvidu.exceptions.OpenViduSessionError

	
exception pyopenvidu.exceptions.OpenViduError

	Bases: BaseException

	
exception pyopenvidu.exceptions.OpenViduSessionDoesNotExistsError

	Bases: pyopenvidu.exceptions.OpenViduSessionError

	
exception pyopenvidu.exceptions.OpenViduSessionError

	Bases: pyopenvidu.exceptions.OpenViduError

	
exception pyopenvidu.exceptions.OpenViduSessionExistsError

	Bases: pyopenvidu.exceptions.OpenViduSessionError

	
exception pyopenvidu.exceptions.OpenViduStreamDoesNotExistsError

	Bases: pyopenvidu.exceptions.OpenViduStreamError

	
exception pyopenvidu.exceptions.OpenViduStreamError

	Bases: pyopenvidu.exceptions.OpenViduConnectionError

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/marcsello/pyopenvidu/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

PyOpenVidu could always use more documentation, whether as part of the
official PyOpenVidu docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/marcsello/pyopenvidu/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyopenvidu for local development.

	Fork the pyopenvidu repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyopenvidu.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ python3 -m venv venv
$ cd pyopenvidu/
$ python setup.py develop

	Create a branch for local development (sould be branched from dev. Prefix it with dev-):

$ git checkout dev
$ git checkout -b dev-name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pyopenvidu tests
$ python3 setup.py pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin dev-name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/marcsello/pyopenvidu/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_pyopenvidu

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch

After this, merge dev into master, and create a tag with the version as name. Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Marcell Pünkösd <punkosdmarcell@rocketmail.com>

Contributors

None yet. Why not be the first?

History

0.2.1 (2022-03-10)

	Added cert and verify options to the OpenVidu object constructor.

	Various fixes in the documentation

	Included Python 3.10 in the test suite

0.2.0 (2020-12-30)

	Implemented OpenVidu REST API version 2.16.0.

	Removed inter-object update

	Changed Base URL

	Removed broken “Thread safety” approach

	See the “Migrating” section of the documentation on how to update your code.

0.1.4 (2020-05-24)

	Added timeouts.

	Added possibility to disable initial fetching.

	Fixed some mistakes in the documentation.

	Reached 100% code coverage.

0.1.3 (2020-04-26)

	Implemented thread safety for the dynamic objects.

	Added IPCAM publishing option.

	Updated and restructured documentation.

0.1.2 (2020-04-07)

	Removed publisher property of the OpenViduSubscriber object, as it was removed from the OpenVidu Server as well.

0.1.1 (2020-04-04)

	Fixed dependencies not being automatically installed.

	Updated classifiers and URLs for PyPI.

	Added more tests and updated existing ones.

0.1.0 (2020-04-03)

	First release on PyPI.

	Implemented support for most of the endpoints except recording and IPCam stuff.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyopenvidu	

 	
 	
 pyopenvidu.exceptions	

 	
 	
 pyopenvidu.openvidu	

 	
 	
 pyopenvidu.openviduconnection	

 	
 	
 pyopenvidu.openvidupublisher	

 	
 	
 pyopenvidu.openvidusession	

 	
 	
 pyopenvidu.openvidusubscriber	

Index

 C
 | F
 | G
 | O
 | P
 | S

C

 	
 	close() (pyopenvidu.openvidusession.OpenViduSession method)

 	connection_count (pyopenvidu.openvidusession.OpenViduSession attribute)

 	
 	create_ipcam_connection() (pyopenvidu.openvidusession.OpenViduSession method)

 	create_session() (pyopenvidu.openvidu.OpenVidu method)

 	create_webrtc_connection() (pyopenvidu.openvidusession.OpenViduSession method)

F

 	
 	fetch() (pyopenvidu.openvidu.OpenVidu method)

 	(pyopenvidu.openviduconnection.OpenViduConnection method)

 	(pyopenvidu.openvidusession.OpenViduSession method)

 	
 	force_disconnect() (pyopenvidu.openviduconnection.OpenViduConnection method)

 	force_unpublish() (pyopenvidu.openvidupublisher.OpenViduPublisher method)

 	force_unpublish_all_streams() (pyopenvidu.openviduconnection.OpenViduConnection method)

G

 	
 	get_config() (pyopenvidu.openvidu.OpenVidu method)

 	
 	get_connection() (pyopenvidu.openvidusession.OpenViduSession method)

 	get_session() (pyopenvidu.openvidu.OpenVidu method)

O

 	
 	OpenVidu (class in pyopenvidu.openvidu)

 	OpenViduConnection (class in pyopenvidu.openviduconnection)

 	OpenViduConnectionDoesNotExistsError

 	OpenViduConnectionError

 	OpenViduError

 	OpenViduIPCAMConnection (class in pyopenvidu.openviduconnection)

 	OpenViduPublisher (class in pyopenvidu.openvidupublisher)

 	
 	OpenViduSession (class in pyopenvidu.openvidusession)

 	OpenViduSessionDoesNotExistsError

 	OpenViduSessionError

 	OpenViduSessionExistsError

 	OpenViduStreamDoesNotExistsError

 	OpenViduStreamError

 	OpenViduSubscriber (class in pyopenvidu.openvidusubscriber)

 	OpenViduWEBRTCConnection (class in pyopenvidu.openviduconnection)

P

 	
 	publisher_count (pyopenvidu.openviduconnection.OpenViduConnection attribute)

 	pyopenvidu (module)

 	pyopenvidu.exceptions (module)

 	pyopenvidu.openvidu (module)

 	
 	pyopenvidu.openviduconnection (module)

 	pyopenvidu.openvidupublisher (module)

 	pyopenvidu.openvidusession (module)

 	pyopenvidu.openvidusubscriber (module)

S

 	
 	session_count (pyopenvidu.openvidu.OpenVidu attribute)

 	sessions (pyopenvidu.openvidu.OpenVidu attribute)

 	
 	signal() (pyopenvidu.openviduconnection.OpenViduConnection method)

 	(pyopenvidu.openvidusession.OpenViduSession method)

 	subscriber_count (pyopenvidu.openviduconnection.OpenViduConnection attribute)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyOpenVidu’s documentation!

 		
 PyOpenVidu

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Examples

 		
 About fetching…

 		
 Dynamic and static objects

 		
 Reasons

 		
 Advanced Usage

 		
 Initial Fetching

 		
 Timeouts

 		
 Migrating

 		
 From 0.1.4 to 0.2.0

 		
 Behavioural changes

 		
 Changes of the interface

 		
 Module overview

 		
 Classes

 		
 OpenVidu

 		
 OpenViduSession

 		
 OpenViduConnection

 		
 OpenViduPublisher

 		
 OpenViduSubscriber

 		
 Exceptions

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.1 (2022-03-10)

 		
 0.2.0 (2020-12-30)

 		
 0.1.4 (2020-05-24)

 		
 0.1.3 (2020-04-26)

 		
 0.1.2 (2020-04-07)

 		
 0.1.1 (2020-04-04)

 		
 0.1.0 (2020-04-03)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

